Искусственный интеллект


Сети с симметричными связями - часть 3


При подаче на обученную ансамблевую сеть некоторого входного образа путем установки начального паттерна активности осуществляется восстановление наиболее близкого к нему образа из числа запомненных в сети. Сеть представляют самой себе, и в ней начинается обычный процесс (синхронный или асинхронный - в зависимости от используемого алгоритма) изменения состояний нейроподобных элементов. При этом из-за наличия только возбуждающих связей возникает проблема регулирования уровня активности сети, т. е. количества одновременно активных элементов. Для ее решения был предложен ряд внутрисетевых и внешних механизмов. Если уровень активности сети поддерживается примерно равным величине ансамбля, то межансамблевая конкуренция приводит к релаксации сети из начального к конечному устойчивому состоянию, соответствующему запомненному образу.
В ряде работ теоретически и экспериментально исследуются количественные характеристики функционирования ансамблевых сетей, например качество воспроизведения образа в зависимости от числа запомненных в сети образов и их размера, а также от степени близости к ним входного образа и т. д. Интересный метод аналитического исследования сетей с обратными связями предложен Хопфилдом.

2. Сеть Хопфилда. Хотя многочисленные результаты моделирования демонстрировали стабильность ансамблевых сетей с обратными связями и хеббовским правилом обучения (эволюцию сети к устойчивому состоянию), отсутствие математического обоснования такого введения препятствовало их популярности. Положение изменилось с появлением работ, где было определено подмножество нейронных сетей с обратными связями, которые гарантированно достигают устойчивого состояния.
В 1982 г. американский биофизик Джон Хопфилд опубликовал статью [134], где на основании аналогии между нейронными сетями и особым классом физических систем - спиновыми стеклами - ему удалось привлечь к анализу нейросетевых моделей мощный математический аппарат статистической физики. Это стимулировало вторжение в область моделирования нейронных сетей большого отряда ученых-физиков, которыми в настоящее время получено много интересных аналитических результатов.



Начало  Назад  Вперед