Искусственный интеллект


Сети с прямыми связями. - часть 2


Это достигается в процессе обучения.
Предложены различные правила обучения персептрона. Один из алгоритмов называется процедурой сходимости персептрона Розенблатта и является вариантом хеббовского правила изменения весов связей с учителем.
Алгоритм работает следующим образом. Вектор весов
image023.gif (193 bytes)
устанавливают в произвольное состояние. На сетчатку поочередно подают образы из обучающей выборки, которые трансформируются в выходной сигнал у решающего элемента. При правильном отклике ничего не изменяют. При неправильном отклике у = 0 веса всех связей от активных элементов сетчатки увеличивают, а при неправильном отклике у = 1 - уменьшают. Величина изменения связи определяет степень адаптации. Если решение существует, оно будет достигнуто при циклической подаче образов обучающей выборки за конечное число шагов при любом начальном выборе связей.
Таким образом, если два класса образов могут быть разделены гиперплоскостью, то при достаточно долгом обучении персептрон будет различать их правильно. Однако линейная разделяющая поверхность, упрощающая анализ персептрона, ограничивает решаемый им круг задач. Этот вопрос тщательно исследовали Минский и Пейперт, показав, какие задачи в принципе не может решить персептрон с одним слоем обучаемых связей. Одним из таких примеров является выполнение логической операции «исключающее ИЛИ».

2. Многослойный персептрон. Как отмечалось выше, простой персептрон с одним слоем обучаемых связей формирует границы областей решений в виде гиперплоскостей. Двухслойный персептрон может выполнять операцию логического «И» над полупространствами, образованными гиперплоскостями первого слоя весов. Это позволяет формировать любые, возможно неограниченные, выпуклые области в пространстве входных сигналов. С помощью трехслойного персептрона, комбинируя логическими «ИЛИ» нужные выпуклые области, можно получить уже области решений произвольной формы и сложности, в том числе невыпуклые и несвязные. То, что многослойные персептроны с достаточным множеством внутренних нейроподобных элементов и соответствующей матрицей связей в принципе способны осуществлять любое отображение вход-выход, отмечали еще Минский и Пейперт, однако они сомневались в том, что можно открыть для них мощный аналог процедуры обучения простого персептрона.


Начало  Назад  Вперед