Искусственный интеллект


Нейронные сети Хопфилда и Хэмминга - часть 2


Каждый элемент xi равен либо +1, либо -1. Обозначим вектор, описывающий k-ый образец, через Xk, а его компоненты, соответственно, – xik, k=0...m-1, m – число образцов. Когда сеть распознá ет (или "вспомнит") какой-либо образец на основе предъявленных ей данных, ее выходы будут содержать именно его, то есть Y = Xk, где Y – вектор выходных значений сети: Y = { yi: i=0,...n-1}. В противном случае, выходной вектор не совпадет ни с одним образцовым.

Если, например, сигналы представляют собой некие изображения, то, отобразив в графическом виде данные с выхода сети, можно будет увидеть картинку, полностью совпадающую с одной из образцовых (в случае успеха) или же "вольную импровизацию" сети (в случае неудачи).

На стадии инициализации сети весовые коэффициенты синапсов устанавливаются следующим образом [3][4]:

(1)

Здесь i и j – индексы, соответственно, предсинаптического и постсинаптического нейронов; xik, xjk – i-ый и j-ый элементы вектора k-ого образца.

Алгоритм функционирования сети следующий (p – номер итерации):

1. На входы сети подается неизвестный сигнал. Фактически его ввод осуществляется непосредственной установкой значений аксонов:

yi(0) = xi , i = 0...n-1, (2)

поэтому обозначение на схеме сети входных синапсов в явном виде носит чисто условный характер. Ноль в скобке справа от yi означает нулевую итерацию в цикле работы сети.

2. Рассчитывается новое состояние нейронов

, j=0...n-1 (3)

и новые значения аксонов

(4)

где f – активационная функция в виде скачка, приведенная на рис.2а.

3. Проверка, изменились ли выходные значения аксонов за последнюю итерацию. Если да – переход к пункту 2, иначе (если выходы застабилизировались) – конец. При этом выходной вектор представляет собой образец, наилучшим образом сочетающийся с входными данными.

Как говорилось выше, иногда сеть не может провести распознавание и выдает на выходе несуществующий образ. Это связано с проблемой ограниченности возможностей сети. Для сети Хопфилда число запоминаемых образов m не должно превышать величины, примерно равной 0.15• n.


Начало  Назад  Вперед